
What Have You Learned So Far?

Yining Liu

December 5, 2018

We started by learning about asymptotics, which is a way to classify func-
tions. Given two functions f(n) and g(n), we hope to describe the relationship

between how fast they grow. You know that you can take the limn→∞
f(n)
g(n) : if

the limit is a real number, then f(n) and g(n) grow at the “same” rate 1; if
the limit is 0, then g(n) grows much faster 2; if the limit is ∞, then f(n) grows
much faster 3.

Oftentimes, we would write runtime in terms of a recurrence relation. Thus,
it’s important to know how to solve recurrence relations. If it’s written as
T (n) = aT (n/b) + O(nd), then congrats! All you need to do is plugging in
Master Theorem. If you’re less lucky, don’t worry! You can always draw the
recurrence tree, write out the work for each layer, and take the summation.

Here comes our first class of algorithms: Divide-and-conquer. Essentially,
you would want to break the problem into smaller parts that have the same
“structure” as your original problem, recursively solve the smaller problems,
and then combine small solutions together. How do you get the runtime? You
probably would want to write the runtime in terms of a recurrence relation,
which you’ve learned how to solve. Two important examples use of Divide-and-
conquer algorithms are matrix multiplication and FFT 4.

We now moved on to learning about graphs. You’ve learned about Depth
First Search in 61B; in 170, you learned that you could do a lot 5 by wisely
modify DFS. For example, you could use pre-order and post-order to determine
the type of edges. In general, post-order is more useful than pre-order, since
we have more information about the entire graph during post-visit. 6 We like
DAGs because they’re linearizable 7. What if your graph isn’t a DAG? It’s okay
- you can find the SCC, which would form a “linearizable meta-graph”. How
do you find SCCs? Reverse all edges and run DFS :P

1f(n) = Θ(g(n))
2f(n) = O(g(n))
3f(n) = Ω(g(n))
4Fast multiplication of two polynomials in O(n logn) with the help of roots of unity
5Useful thing to consider when you modify DFS: do you want to do the task from top down

(during pre-visit) or from bottom up (during post-visit)?
6This is just the intuition. Make your own decision on which one to use depending on the

problem :)
7Intuitively, a linearized graph is nice because then you can “process” the nodes in a more

organized order.

1

Graphs without distance are kind of borning, so we spent some time looking
at graphs with edge weights, and investigated shortest paths algorithms. You
first learned about Dijkstra’s Algorithm. Given a graph with positive edges
weights, Dijkstra’s Algorithm is guaranteed to find the shortest path from a
source to all other vertices in linear time. Unfortunately, if the graph has neg-
ative weights, Dijkstra might not work; the expensive edges might prevent us
from seeing the good negative edges.

What if the graph has negative weights? We also learned about how to deal
with this! You can use Bellman-Ford Algorithm, which runs |V | − 1 iterations
8 and updates all edges during each iteration. Bellman-Ford Algorithm runs
in O(|V ||E|), but it’s still great because it works on any graph. Moreover, it
can detect negative cycles: just run for one more iteration and see if anything
changes.

We then talked about another graph minimization problem: how do I con-
nect all vertices with minimal costs 9? You know two algorithms that can
achieve this for you: Kruskal’s algorithm 10 and Prim’s algorithm 11. They
run pretty fast 12 and you know they work because of the cut property 13. You
might have already realized that these two algorithms are greedy: the solution
is built up by choosing the next piece that offers the most immediate benefit,
without worrying about the future.

We discussed three more examples of greedy algorithm. The first example
is Huffman encoding : you assign more frequent symbol shorter codeword by
combining the two nodes with lowest frequencies. The second example is Horn
Formula: you set all variables to be false, reluctantly fix the unsatisfied impli-
cations 14 and check at the end that whether pure negations are still satisfied.
The third example is set cover : given a collection of subsets of S, you want to
pick some subsets that cover S. Although the greedy strategy might not always
choose the smallest number of subsets 15, it’s only off by a factor of lnn. By
the way, how do you prove the correctness of a greedy algorithm? You can use
exchange argument : show that you can make any solution better by making it
looks more like your greedy solution.

We also talked about dynamic programming. Whenever you see a recursive
problem, you could use dynamic programming to improve the runtime. Instead
of mindlessly calling yourself on small inputs like regular recursion does, dynamic
programming solves the smallest subproblems first, stores the results in a table
and then uses them to solve larger ones. In order to determine the runtime,
first think about the size of the table, then think about how long it takes to fill

8You can implement with early stopping: if nothing gets changed during one iteration, you
could stop.

9If you think of edge weights as costs, this is saying we want to find the minimum spanning
trees.

10Picks the next cheapest edge that doesn’t create a cycle.
11Grows the subtree by adding the cheapest edge from tree to another vertex.
12O(|E| log |V |)
13Any edge of minimal weight in a cut is in some MST.
14“T ′′ =⇒ “F ′′; can be fixed by setting the variable on the RHS to be true.
15Unlike our previous examples where greedy algorithms give the optimal solution

2

in each entry.
The last topic in algorithms is linear programming. You need to set up a

linear objective function and some linear constraints; simplex would return an
optimal solution in polynomial time on average 16. If you want to solve the linear
programs, you could plot the feasible regions and choose the optimal vertex. One
important application of linear programming is max flow : use residual graph to
keep track of the available options, and stop once there’re no such path. You
know the solution is optimal because max-flow equals to min-cut. In fact, for
all linear program, you can find a dual program, whose solution would act as a
certificate of optimality 17.

Up to this point, we’ve been trying to find efficient algorithms. Are there
problems that are intrinsically harder than the other ones? So, you learned
about complexity, which teaches you a more rigorous way of comparing the
difficulty 18 of search problems 19. In general, how do you show A ≤p B? 20 You
need to show there’ a polynomial time reduction from A to B: in other words,
find a polynomial time algorithm that changes instances of A into instances of
B.

You spent some time with dealing with NP 21, P 22, NP -complete 23 and
NP -hard 24. How do you show a problem Q is NP-hard? Pick a NP-complete
problem, and reduce it to Q.

(I hope you learned a lot from this class! Take good rest, and good luck on
your final!)

16If optimal solutions exist. For example, there’s no optimal solution if the linear program
is infeasible or unbounded. In the worst case, simplex takes exponential time.

17bound the objective function by setting up a dual to find the “best” linear combinition
of constraints.

18Difficulty in 170 is terms of runtime; a different type of difficulty (computability) was
discussed in 70.

19A solution can be verified in polynomial time.
20Finding an efficient algorithm for B is at least as hard as finding an efficient algorithm

for A
21Search problems.
22NP-problems that can be solved in polynomial time; at most as hard as NP-complete.
23NP-problems that all NP problems can be reduced to them in poly time.
24Problems that all NP-problems can be reduced to them in poly time; at least at hard as

NP-complete.

3

