
CS70: Computability

Yining Liu

July 9, 2018

This document is largely adapted from CS70 computability notes. My knowl-
edge of computability is also limited to the level of CS70. This document consists
of what I learned about this topic after I took CS70. In that sense, it might not
be comprehensive, and some of the language is probably not 100% accurate (as
always, any correction or suggestion is welcomed!). I hope it will serve as a nice
introduction to this topic.

1 The Halting Problem

Let’s take another look at the famous Halting Problem: given a program P
and an input x, does P (x) halts? In other words, I want to see whether it is
possible to write a program TestHalt (P, x) that does the following:

Algorithm 1 TestHalt

1: function TestHalt(P, x)
2: if P (x) halts then
3: return True
4: else
5: return False

Our goal is showing TestHalt is not computable, i.e. it does not exist. In
order to show it doesn’t exist, I’m actually going to assume TestHalt exists, and
use it to define another program called Turing.

Algorithm 2 Turing

1: function Turing(P )
2: if TestHalt(P, P ) is True then
3: loop forever
4: else
5: halt

Now, I’m going to take a small digression here and take a look at the set of
all computer programs. Each computer program can be thought of a bit string

1



with finite length. Thus, the set of all computer programs are countable. So, I
can enumerate all computer programs and put them into a table like this:

P0 P1 P2 · · ·
P0

P1

P2

...

Another observation is, since all computer programs are bit strings, so it’s totally
okay if I pass in one Pi as the argument into another Pj . I’m actually going to
fill out my table like this: for each of the (i, j)-entry in my table, I’m calling
Pi(Pj) and see whether it halts - if it halts, I’m putting a H into the (i, j)-entry;
if it doesn’t halt, I’m putting a L into the (i, j)-entry.

For example, first I’m going to try P0(P0) and check whether it halts. Let’s
say it does, so I’m putting a H in (0, 0). If I keep doing this, I’m going to fill up
my table and get something like this:

P0 P1 P2 · · ·
P0 H L L · · ·
P1 L H H · · ·
P2 H H H · · ·
...

...
...

...
. . .

If Turing exists, then it has to appear somewhere in the table. Let’s take
a look at whether its box has filled in with a L or a H.

P0 P1 P2 · · · Turing · · ·
P0 H L L · · · · · ·
P1 L H H · · · · · ·
P2 H H H · · · · · ·
...

...
...

...
. . . · · ·

Turing ????? · · ·
...

...
...

...
...

...
. . .

Case 1: Fill in H This means Turing(Turing) halts. If we go back and
check how we define Turing, this means the first if condition returns False. This
is telling us TestHalt(Turing, Turing) returns False. If we go back and check
how we define TestHalt, TestHalt returns False only if Turing(Turing) does not
halt. Contradiction, so we cannot fill in H.

Case 2: Fill in L Using the similar argument (Exercise: how do you arrive
with the contradiction here? ), we cannot fill in L either.

Thus, Turing does not exist on the list, which means it is not computable.

2



2 Computability

Let’s take another look at how we define Turing. Where exactly does the problem
arise? It’s prefectly fine to check whether a program returns True; it’s also
totally okay to write something that loops forever or halts. The problem is
because TestHalt does not exist, i.e. uncomputable.

2.1 Reduction

What’s the relationship between Turing and TestHalt? We used TestHalt to
implement Turing, so we can say Turing reduces to TestHalt. Which of them
is harder? I would argue TestHalt is harder - if you give me a function that
does what TestHalt does, it would be very easy for me to implement Turing.

In general, if a program A reduces to another program B (i.e. A→ B), then
that means you can use B to solve A. In that sense, B is “harder” than A.

2.2 Proof for uncomputability

Now, we can see how to prove a program P is uncomputable. We know
TestHalt(P, x) doesn’t exist. Intuitively, if P is “harder” than TestHalt, then
P cannot be computable neither. More formally, if you want to prove P is
uncomputable, you want to implement TestHalt using P . 1 This is the same as
saying, if you want to prove P is uncomputable, reduce TestHalt 2 to P .

1This is essentially the following argument: Assume P exists. Then, TestHalt also exists
(using your implementaion). Contradiction. Thus P does not exist.

2Do not reduce Turing to P . You can forget about Turing now. It has served its purpose.

3


