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We started with learning about logic. You learned about that“If it rains, I’ll
bring an umbrella” is the same as “If I don’t have an umbrella with me, then it’s
not raining”, both of which are different from “If I have an umbrella, then it’s
raining”. 1 You also wrapped your head around ∀, ∃, and learned that you can’t
move them freely whenever you want. 2 You became comfortable with negating
a statement: stay in the same “universe” but flip the quantifiers; negate each
clause, and flip the logic symbols (which are used to connect clauses).

After making sure you’re comfortable with manipulating a statement, you
learned about how to prove a statement. Direct proof? Proof by contradiction?
Proof by contraposition? Proof by cases? Proof by induction? Wisely use one
or a combination of proof techniques to convince others that a statement is true.

We spent a relatively long time on learning about induction. If you want to
prove a statement P (n) 3 is true for all n ∈ N, do 1) prove P (0) is true and 2)
assume P (n) then show P (n + 1) is true. Oh, why does induction work? Well
ordering principle. In fact, for all induction proofs, you can formulate a similar
proof using WOP: just put all “bad inputs” in a set S , find the smallest element
n0 in S , show that n0 cannot be 0, and then show n0 cannot be in the set by
showing P (n0 − 1) =⇒ P (n0). Get stuck when you want to prove P (n)? Try
giving yourself more information by using strong induction, which, by the way,
is equivalent to simple induction. 4

We are (yet-to-be) computer scientists. We care about graphs. You learned
about some fast ways to check some properties of a graph. Can I find a tour
that visits all edges exactly once? 5 Well, check whether all vertices have even
degree. After exploring duality of graphs, you learned about the famous Euler’s
formula, which tells you a nice relationship between v, f and e in a connected
graph: v + f = e + 2. If someone come to you with a graph and ask: is my
graph planar? You know after counting v and e, you can confidently give the
answer “no” to some of the graphs. 6 7 8

1P =⇒ Q is the same as ¬Q =⇒ ¬P . They’re not the same as Q =⇒ P .
2See discussion 1a, discussion 1b.
3It’s a good habit to always explicitly write out P (n).
4See discussion 1d.
5This is called a Eulerian Tour.
6K5 and K3,3 are nonplanar.
7planar =⇒ e ≤ 3v − 6.
8Bipartite + planar =⇒ e ≤ 2v − 4.
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We also color graphs. 9 Bipartite graphs are always 2 colorable. If you
want to color the vertices of a planar graph, 4 colors is always enough! You
also learned about hypercubes, which has a nice recursive definition. Ready to
use induction on graphs? You know that you should start with the graph in
P (n + 1), modify the graph to the one in P (n) so you can use your inductive
hypothesis. Then, add back whatever you remove to get the graph in P (n+ 1)
again and do something to show the original statement still holds. You know
that we should use this procedure to avoid potential built-up errors. 10

We then moved on to modular arithmetic. It’s like a sad little world where
people there try to use finite number of integers to get a number system that
works similar to ours. 11 Those people actually did a great job “translating”
between their numbers and ours. They can add 12, subtract 13, and multiply 14.
In most of those worlds 15, even for non-zero numbers, we can’t always divide16.
In mod m, a number a only has a multiplicative inverse if it’s coprime with m.
How do I check if a is coprime with m (that is, gcd(a,m) = 1)? Run Euclid’s
Algorithm. Okay. gcd(a,m) is 1! How do I get a−1 (mod m)? Run Extended
Euclid’s Algorithm. 17

We took a tiny detour to learn about bijections. We know that f−1 exists
if and only if f is a bijection. Why did we take this detour? You know that if
gcd(a,m) = 1, f(x) = ax (mod m) has an inverse so it’s a bijection, which is
then used to prove Fermat’s Little Theorem. 18 19 You can use FLT to quickly
simplify some exponents in mod p if p is prime.

That was a lot about mod. Why do we learn about them? One important
application is RSA. You met Alice, Bob and Eve. Using RSA, Alice and Bob
pick two large primes p and q, an integer e, whose inverse in mod (p− 1)(q− 1)
is used as the decryption key d. Alice wants to encrypt a message m? Just do
me (mod N). Bob wants to decrypt a cipher c? Just do cd (mod N). How do
you quickly calculate exponents as N is not prime here (so cannot use FLT)?
Try repeated squaring. Also, thankfully, evil Eve cannot decrypt the message
in a reasonable time because factoring N is hard.

When Alice sends her message to Bob, she breaks it up into several pack-
ets. Sometimes, even without Eve, Alice might not be able to reliably send
her message to Bob because the channel might erase or modify some of her
packets. Before learning about how to deal with those two type of errors, you
equipped yourself with a tool - polynomials. You learned that there are two
ways to represent a polynomial with degree d: either using d + 1 coefficients,

9Take CS170 to learn why we care about coloring vertices.
10See homework 2.
11Do NOT think of mod as an operation.
12a ≡ b (mod m), c ≡ d (mod m) =⇒ a+ b ≡ c+ d( (mod m)
13Subtraction is just adding additive inverse.
14a ≡ b (mod m), c ≡ d (mod m) =⇒ ab ≡ cd (mod m)
15All non-zero numbers have a multiplicative inverse in mod p
16Division is multiplying by multiplicative inverse.
17See discussion 2c.
18First version: p prime, a 6≡ 0 (mod p) =⇒ ap−1 ≡ 1 (mod p);
19Second version: p prime =⇒ ap ≡ a (mod p), ∀a.
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or d + 1 points. Those two representations are equivalent in some sense: want
to translate from points to coefficients? Use Lagrange Interpolation; want to
translate from coefficients to points? Evaluate the polynomial at d+ 1 points.

You played around with polynomials by learning about secret sharing. If
you want to share a secret such that only k officials getting together can reveal
the secret, and even k − 1 of them together would know nothing, you can use
polynomials! Just plot your secret at x = 0, randomly pick k−1 more points so
that you can uniquely construct a degree k polynomial. Then, give each official
one point. When k of them getting together, they can construct the original
polynomial and get the secret.

Time to get back to our original goal of using polynomials to deal with
erasure errors and general errors. If your channel erases k packets, then use
your n packets to get a degree n− 1 polynomial, evaluate your polynomial at k
more points and send all n+k packets. It’s okay if the channel erases k of them
- the receiver can still construct the original polynomial back using the received
packets. What if the channel modifies k packets? Then you need to send n+2k
packets 20.

By the way, have you ever wondered about stuff like “are all infinities the
same”? If so, you are pretty lucky, since you learned about countability which
hopefully answered your doubts. Some sets 21 with infinite size are countable.
Want to prove a set is countably infinite? Find a way to enumerate the elements;
that is, find a bijection between your set and N. Some sets 22 are uncountable.
Want to prove a set is uncountable? Use diagonalization: assume you can
enumerate the elements; put them in a table and construct a new element by
flipping the entries in the diagonal.

Have you wondered about other stuff like “are all programs computable”?
It turns out that the answer is “no”. One of the uncounputable program is
TestHalt, which takes a program P and an input x, and tells us whether P halts
on x. How do we show whether a program is not computable? Don’t worry -
you just need to show that program is “harder” than TestHalt 23.

Then, we nicely made an transition into probability by learning about count-
ing 24. How do you count things? For most of the cases, you want to divide
the things you want to count into smaller problems. In general, if your smaller
problems are sub-tasks, then you want to multiply; if your smaller problems are
different cases, then you want to add. Balls and bins? Stars and bars? They
are just ways to model the problems. Also, have you noticed that you can use
two ways to count the exact same thing? Congratulations. You probably just
constructed a combinatorial proof.

Let’s count some useful things. When you perform an experiment, the sam-

20See Discussion 3b
21Examples of countably infinite sets: N,Q, the set of bit strings with finite length
22Examples of uncountabe sets: R, the set of bit strings with infinite length
23See Discussion 4a for examples. See my computability notes for more explanations. Es-

sentially, you want to reduce TestHalt to that program by using that program to implement
TestHalt.

24See Discussion 4b for more examples.
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ple space is a set consists of outcomes, which are your direct observations in some
sense. Then, you can use events 25 to group your outcomes. Since each outcome
assocaites with a probablity, the probability of an event is just the summation
of the probabilities of the outcomes it’s made up from. Wait... how does that
relate to counting? Luckily, when your outcomes have the same probabilities,
you can use counting to find out the probability of an event 26.

We then learned about conditional probability. That is, what if you restrict

the sample space by saying B happens? Then, you can use Pr(A|B) = Pr(A∩B)
Pr(B) .

Confused about the difference between P (A|B) and P (A ∩ B)? P (A|B) is
saying “I already know B happens; what’s the probability of A happening?
And P (A ∩ B) is saying “I still know nothing; what’s the probability of A and
B happening at the same time?

Let’s see why conditional probability is helpful. Sometimes, you want to
compute Pr(B|A) but you know Pr(A|B), Pr(A|¬B) and Pr(B). How do you
“filp” the condition? First, you might want to use Bayne’s Rule: Pr(B|A) =
Pr(A∩B)
Pr(A) . Okay, Pr(A ∩ B) can be calculated by Pr(A|B) · Pr(B), but what

about Pr(A)? We have some information about B so let’s introduce it to our
calculation. You can partition A by checking whether B happens: Pr(A) =
Pr(A∩B)+Pr(A∩¬B). Okay, we know Pr(A∩B), but what about Pr(A∩¬B)?
Let’s try something similar: Pr(A∩¬B) = Pr(A|¬B) Pr(¬B) 27. And nice! We
are done.

Some events do not depend on each other. That means, knowing one event
happens doesn’t affect the probability of the other event. 28 How do you
check? Compute the probablity of each and check whether the product is the
probability of the intersection. 29 What’s nice about them? If you want to
calculate probabiliy of an intersection of independent events, 30 you can just
calculate the probability of each and then multiply them. By the way, a nice
case for calculating the union of events if when the events are disjoint 31: the
probability of the union then would just be the sum of probability of individual
events.

We notice that there are similarities between some events and their proba-
blities, so we decide to use random variables and distributions to capture these
connections. We started with learning about three famous random variables
that take on discrete values.

The first is Binomial random variable. It denotes the number of success
in a fixed number of independent trials (each trial has the same probability
of success). What’s the distribution of X ∼ Binomial(n, p)? That is, what is
Pr(X = x)? There are

(
n
x

)
configurations to get x success in n trials, and the

25An event is a subset of the sample space.
26If outcomes have the same probability, then Pr(A) =

|A|
|ω|

27Pr(¬B) = 1− Pr(B)
28A and B are independent ⇐⇒ P (A|B) = P (A)
29A and B are independent ⇐⇒ P (AB))
30P(intersection): If not independent, use Product Rule.
31P(union): If not disjoint, use Inclusion-Exclusion Principle
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probability for success for each configuration is px(1− p)n−x 32.
The second is Geometric random variable. It denotes the number of indepen-

dent trials until we get the first success (each trial has the same probability of
success). What’s the distribution of X ∼ Geometric(p)? That’s the probability
of the last trial is success and the previous trials are all failures 33.

The last one is Poission random variable. It denotes the number of occurance
in a fixed time period, given the rate of occurance in that fixed time period.
Want an intuitive way of seeing the weird PMF of Poisson distribution 34? If
you plot the PMF of a binomial RV with large n and small p, it approximately
overlaps with the PMF of Poisson(np).

Indeed, distribution captures everything about a random variable. But some-
times, we want a “summary” of the random variable. You learned about expec-
tation 35 (which tells you the weighted average), and variance 36 (which tells you
the deviation). You also learned about how to calculate variance: a standard
method is using expectation: V ar(X) = E[X2] − (E[X])2. Okay, then, how
do we calculate expectation? Thanks to linearity of expectation, you can break
up your random variable into smaller ones 37, calculate the expectation of the
smaller ones and then add them up. What if your smaller random variables
are not independent? Doesn’t matter - that’s one of the beauty of linearity of
expectation 38.

We also learned about the interaction between two (or more) random vari-
ables, and we use joint distribution to describe the interaction. Joint distribution
captures everything about these two random variables! Using the joint distribu-
tion, you can recover the distribution of both random variable 39, or analyze the
distribution of one RV conditioning on the value of the other RV 40. In general,
knowing marginal distributions isn’t enough to determine the joint distribution;
but if the random variables are independent, knowing marginal distributions is
enough! 41

PMF essentially captures all information about a random variable. What
if we don’t want such details? What if we only want the “weighted average”?
That’s expectation. What if we only want the “deviation”? That’s variance.
Similarly, joint PMF captures all information about two random variables.
What if we only want a measure of linear relationship? That’s covariance.

You learned about some different strategies to calculate expectation, in case

32X ∼ Binomial(n, p) ⇐⇒ Pr(X = x) =
(n
x

)
px(1− p)n−x

33X ∼ Geometric(p) ⇐⇒ Pr(X = x) = (1− p)x−1p
34X ∼ Poisson(λ) ⇐⇒ Pr(X = x) = e−λ λ

x

x!
35E[X] =

∑
∀x xPr(X = x)

36V ar(X) = E[X − E[X]]
37Common strategy: break up RV into a sum of indicators or a sum of geometric random

variables
38E(aX + Y ) = aE(X) + E(Y ). Independence is not required.
39Marginal distributions:

Pr(X = x) =
∑
∀y Pr(X = x, Y = y); Pr(Y = y) =

∑
∀x Pr(X = x, Y = y)

40Conditional distributions:
Pr(X = x|Y = y) =

Pr(X=x,Y=y)
Pr(Y=Y )

; Pr(Y = y|X = x) =
Pr(Y=y,X=x)

X=x
41X,Y independent ⇐⇒ Pr(X = x, Y = y) = Pr(X = x) Pr(Y = y),∀x, y
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the expectation is hard to calculate directly from the formula. You can break up
your random variable into the sum of smaller ones 42 and then use linearity of
expectation. If the random variable takes on values {0, 1, · · · } and you know how
to calculate the tail probabilities, then you can use sum up the tail probabilities
to get the expectation by tail sum formula. Sometimes, you might think “it
would’ve been so easy to calculate E(X), if I know the value of Y ”, then maybe
try taking the weighted average of conditional expectation.

We moved on the continuous random variables. Since the probability of
them taking on an exact value is zero, we define probability density function
instead of PMF for them. How do you get the probability of a continuous RV?
Probability is embedded as the area under PDF. You can transfer most of the
concepts in discrete RV to continuous RV: change

∑
to
∫

, and change pX(x)
to fX(x)dx.

You learned about two famous continuous random variables. The first is Ex-
ponential Random Variables. It’s used to model the length of time for an event
to happen, and it’s a continuous analogue of geometric random variables. Like
geometric random variables, they have memoryless property and their tail prob-
abilities are pretty easy to calculate. The second is Normal Random Variables.
They are random variables whose distribution follows a bell curve. Unfortu-
nately, their CDF doesn’t have a closed form. However, we have a nice table for
the CDF of standard normal random variables! You can transform any normal
random variable to the standard one, and then use that table. Do you want
another motivation on learning about normal distributions? From WLLN, we
know that sample average converges to population mean. CLT tells us some-
thing stronger: if you have a lot of i.i.d. random variables, no matter what their
distribution is, the sum of them converges to normal distribution.

Sometimes, you only want an upper bound for your probablity. If you know
the expectation, Markov Inequality gives you an upper bound for the tail prob-
ability. 43 If you know the variance, Chebychev’s inequality gives you an (gen-
erally better) upper bound for the probability of extreme values 44.

So far, we’ve mostly only investigated about the distribution of a finite num-
ber of random variables. We’re closing this course by exploring about Markov
Chain: a sequence of random variables, each of which only depends on the one
before it. Fortunately, we don’t need to explicitly give you the PMF for all of
them. If someone tell you what the transition probability and the initial dis-
tribution, you will be able to tell them the distribution of any of the random
variable in the sequence.

You learned about a special distribution (called the invariant distribution).
Once you reach this distribution, your markov chain “stops changing”. You
were also introduced the terms irreducible (“you can go to anywhere, from any-
where”) and aperiodic (“all states have period 1”). Why do we care about these
properties? It turns out that although all markov chains have at least one invari-
ant distribution, irreducible markov chain only has one. If your markov chain

42For example, indicators or geometric random variables (Coupon Collector’s Problem)
43Markov Inequality requires nonnegative random variables.
44Chebychev’s inequality can be applied to any random variable.
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also happens to be aperiodic, then you would get something even stronger: no
matter what your initial distribution is, the distribution would always converge
to π.

Look at everything you’ve learned! I’m very proud of you all. I hope you
enjoyed this class as much as I did. Eat well; take good rest; and good luck on
your final!
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